

Creating Sustainable Product Service Systems

The model of the Eco-costs/ Value Ratio

dr. ir. Joost G. Vogtländer Delft University of Technology, 2009

The Issues:

- 1. What is a sustainable product?
- 2. Understanding the concept of the "value" of products and services
- 3. How can you calculate the "eco-burden" of a product
- 4. What is the meaning of eco-efficiency (E/E indicator)?
- 5. How can we generate eco-efficient value creation?
- 6. How do we apply PSS successfully?

"Bundling Products and Services" has a long history in business

The road towards sustainability requires well balanced decisions on the 3 P's

www.ecocostsvalue.com Fig. 3.1b

The model of the costs, the price and the value

In a integral approach, businesses will continuously strive for improvement of the value/costs ratio

Note: value = product quality + service quality + image

The difference of commodity products and top quality services is the margin

Commodity products (grain, milk, electricity)

Top quality products/services (diners in restaurants, perfume, jewels, sports cars)

Commodity products are high volume, low margin Top Quality products and services are low volume, high margin

The value and the costs get lower in time during the life of a product type

Innovative products: high costs, high value, low volume, exclusive Normal products low costs, medium value high volume, Q driven Common products low costs, low value high volume, costs driven

6

www.ecocostsvalue.com Fig. 3.3

Case: the value bundle of the mobile phone market (a PSS)

"Product Service System" (= bundling in 1 package)

We understand now the Profit & Prosperity P. Next: the P of Planet.

The environmental burden might be characterised by the 'external costs' of damage

..... the calculation is extremely complex

and involves many assumptions and subjective weighting steps.....

.... however, I prefer to define eco-costs in terms of the 'marginal prevention costs'

"the eco-costs are the costs of prevention measures, which are required to reduce the current emissions, to a sustainable level"

Comparison of eco-costs and 'external damage costs': prevention results in less damage

Eco-costs of emissions (the marginal 'pollution prevention costs') 2007:

- Acidification: 7,55 ∉kg SO_x equivalent
 - eutrophication: 3,60 €kg phosphate equivalent
- eco toxicity:
- carciogenics:
- summer smog:fine dust:

- 802 €kg Zn equivalent
- 14,5 €kg PAH equivalent
- summer smog: 3,54 €kg VOC equivalent
- global warming: 0,
- 0,135 ∉ kg CO₂ equivalent

Marginal <u>external damage costs</u> related to health problems, from the Benefits Table database of the European Commission DG Environment:

	The Netherlands	EU-15 average	
acidification:	7,00 <i>€</i> /kg	5,20 <i>€</i> /kg	(SO _x equivalent)
Fine dust:	18,0 <i>€</i> /kg	14,0 <i>€</i> /kg	(fine dust PM2.5)
> summer smo	g: 2,40 €/ kg	2,10 <i>€</i> /kg	(VOC equivalent)

Examples of eco-costs of emissions:

PVC:	€0,33 per kilogram	(price €0,60 per kilogram)
Aluminium:	€2,22 per kilogram	(price €2,20 per kilogram)
Recycled AL:	€0,27 per kilogram	(price €2,20 per kilogram)

Examples of eco-costs per Euro 'real money':

Transport by plane:	€ 1,00 thru €1,50 per Euro
Transport by truck:	€ 0,45 thru €0,70 per Euro
Warehouses:	€ 0,50 per Euro
Offices and houses:	€ 0,35 per Euro
Cars:	€ 0,30 per Euro (excl fuel!)
Diesel:	€ 1,00 per Euro
Labour:	€ 0,05 tot €0,15 per Euro

We understand now the P of Profit & Prosperity and how to calculate the eco-costs (the P of Planet). Next: the delinking of economy and environment.

The tripple P model is not about "or" but about "and"

"What we need now is a new era of economic growth – growth that is forceful and at the same time socially and environmentally sustainable."

(Brundtland, 1987)

		A
"The delivery of competitively priced goods an	d services	ofit,
that satisfy human needs and bring 'quality of	life',	pr <
while progressively reducing ecological impact	ts '	†
and resource intensity, throughout the lifecycle,		osts et'
to a level at least in line with the earth's		ane
estimated carrying capacity"	(WBCSD, 1995)	ecc

The basic idea of the EVR model: Combining the value chain of Porter and the LCA chain

Note: the Δ eco-costs are relatively high at the front end of the chain, the Δ value is relatively low at the front end, which is causing a double problem in the developing countries

Case: The EVR in a production chain. A TV from components to the retail shop, produced inside the EU

Note that the slope of the line is the EVR

The eco-costs, the costs and the value of a product and/or service

Note: Value is the market value (the fair price)

Ρ

The consumers side: Preference of expenditures of households in the Netherlands (1995)

EVR: transport & holidays = 0.70 – 1.50 ; housing 0,3 ; clothing & health 0,2

EVR and the total expenditures of all consumers in the EU25

Ρ

Two strategies: - ask (force) industry to reduce the eco-costs

- reduce consumer spending at the high end of the curve

Case: Reduction of the weight of a car, by a redesign of a part of the coach-work (cumulative effect over the total life cycle)

Data from Dr. Konrad Saur, PE Product Engineering GmbH

Case: 'Savings' of fuel by a better aerodynamic design? The 'rebound effect'

The required direction of 'delinking': less eco-costs, but also more value (='eco-efficient value creation')

Case: Better EVR of Hybrid Cars.

- The Lexus features Eco-efficient Value Creation:
- better acceleration + less noise = more market value
- lower eco-costs (by better fuel efficiency)

Case: Senseo of Sara Lee / DE (a PSS ?)

Eco-efficient Value Creation

- more convenience
 more market value
- lower eco-costs
 (less boiling water)

Case: Senseo of Sara Lee / DE (more value at a lower EVR)

Last step: further reduction of the eco-costs of the packaging of Senseo

The 3 P's and the EVR model: Strategic consequences for developing a PSS

Ρ

Product portfolio matrix for product strategy of companies

www.ecocostsvalue.com Fig. 4.3a

1. Example PSS: required financing of the investment

 (P)

Case: Reduction of the weight of a car, by a redesign of a part of the coach-work

Note that polymer more than doubles the price of the car

2. Examples PSS: more convenience

Case: Senseo of Sara Lee / DE

Result: more value

Case: train + bike system

Result: more value

3. Examples PSS: more image

Case Chauffeur + Car: 'posh'

Case Sustainable Dance Club: 'cool'

Result: more value

Result: more value

Concluding:

Don't blame the customer

for not buying 'green'

but

create 'eco-efficient value'

(= minimum Ecocosts/Value Ratio)

by means of a PSS